Computer Science Lecture Series

Engineering Approximate Computations

Michael Carbin, Assistant Professor of Electrical Engineering and Computer Science, MIT

Oct 15, 2020

There’s a new ecosystem of applications that integrates machine learning into a variety of tasks. Typical domains have included image recognition and natural language processing. However, these techniques have also spread to computer systems domains, such as program compilation, resource scheduling, and database query optimization, yielding new computer systems that learn from data to achieve their goals.

With the success of these systems, we must grapple with the reality that they model and compute with objects that are inherently approximate — real numbers (only computable up to a given precision), neural networks (only validated on a given dataset), and probabilistic computations (results only computable up to a given probability). This reality presents many engineering questions about interpreting, debugging, validating, verifying, and optimizing these systems.

As an illustrative example of such a system, I'll present our work on Ithemal and DiffTune, our deep learning systems for learning the behaviors of modern computer processors. Together these systems combine parameterized programs with neural networks together to learn interpretable, neurosymbolic models.

Guided by these engineering challenges, I’ll also discuss our work on the semantics of and reasoning for sound real-valued, differentiable, probabilistic computation, which is the core computational model behind this new class of systems.


Please register here to join us for the CS Colloquium Series via Zoom this fall. Once you register, you will receive the Zoom link. You only need to register once to be able to attend any of the seminars. 

Speaker Bio

Michael is an Assistant Professor of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology.  At MIT, he leads the Programming Systems Group, with a primary research focus is the design of programming systems for approximate computations: computations whose results are only computed up to a given precision or probability. Typical goals for his work include improved reliability, performance, energy consumption, and resilience for computer systems.  

Michael has received an NSF CAREER Award, a Sloan Foundation Research Fellowship, and faculty awards from Google and Facebook. His work has received best paper awards at OOPSLA, ICLR, and ICFP. His work has also received a CACM Research Highlight. 

Michael received a B.S. in Computer Science from Stanford University in 2006, and an S.M. and Ph.D. in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology in 2009 and 2015, respectively.


Stratos Idreos


Jessica Brenn