Enabling Soft Robots to Function in Complex Environments: From Addressing Fundamental Challenges to Applications in Beating Heart Surgeries
Friday, October 27, 2023 11am to 12pm
About this Event
29 Oxford Street, Cambridge, MA 02138
Complex and unstructured environments pose several challenges for traditional rigid robot technologies.
Inspired by biological systems, soft robots offer a promising alternative with respect to their rigid counterparts and demonstrate increased resilience and adaptation, resulting in machines that can safely interact with natural environments.
Mimicking how biological systems use their soft and dexterous body to interact with and exploit their surroundings entails addressing multiple fundamental challenges related to the design, manufacturing, and control of soft robots.
In this talk, I will present our research on developing new manufacturing methods to enable the fabrication of multi-degrees-of-freedom soft robots with distributed actuation and multiscale features.
I will also discuss opportunities and challenges arising in deploying soft multi-degrees-of-freedom soft robots in the real world. Specifically, I will introduce our work on methods to embed control and computational capabilities onboard soft robots to increase their autonomy, focusing on our efforts towards enabling electronic control of multi-DoF fluidic soft robots.
Finally, I will present our work on the application of soft robotic technologies in minimally invasive surgery. I will discuss various applications, including atraumatic manipulation of large abdominal organs and accurate and effective manipulation of delicate structures inside the beating heart.